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The behaviour of a conserved scalar field in the h a 1  period of an axisymmetric 
turbulent wake is investigated theoretically. Explicit formulae are derived for 
the behaviour, during and just prior to the scalar field final period, of quantities 
such as mean concentration, concentration correlations and velocity-scalar or 
vorticity-scalar cross-correlations. In  particular, if r is the time measured from 
a virtual origin it is shown that scalar intensity, which decays as 7-8, is more 
persistent asymptotically than turbulence intensity, which displays a 7-3 decay. 
By deriving the scalar field structure as perturbed by the Reynolds stresses 
acting on mean scalar gradients in the final period it is shown, e.g., that the mean 
field perturbation dies out a t  least as rapidly as r4, whereas the mean field itself 
decays as r-l. Numerical results are presented to display the spatial structure of 
typical scalm correlations and velocity-scalar cross-correlations, which are com- 
pared where possible with non-asymptotic measurements in the wake of a heated 
sphere. 

1. Introduction 
In  this paper we explore the possibility of deducing the structure of a passive 

scalar field in the final period regime of an axisymmetric turbulent wake. The 
wake is considered to be embedded in an infinite fluid. This particular non- 
homogeneous turbulent field falls in a class for which the final period of decay 
was analysed by Phillips (1955), who deduced the velocity field in terms of 
two invariants of the wake motion: the net linear momentum and the net 
angular momentum imparted to the fluid by a localized disturbance. I n  par- 
ticular, he derived expressions for the energy spectrum tensor in the final period 
of an axisymmetric wake. 

Non-homogeneity is the normal condition for most manifestations of tur- 
bulence, and those scalar processes that depend significantly on large-scale 
turbulent motions are influenced by both the production of scalar intensity due 
to interaction with the mean fields, and by the transfer of turbulent energy and 
scalar intensity from one locality of the turbulence to another. 

Boundaries may also play a significant role in modifying decay processes. 
However, in the situation considered here the boundaries are assumed to be so 
far removed from regions where there is appreciable turbulence or scalar intensity 
that their influence can be neglected. Furthermore, in the final period of a wake, 
the mean flow exercises an ever-decreasing influence on the turbulence structure. 

28 F L M  
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We shall show that, asymptotically, the dominant processes are diffusion to 
regions of lower intensity and interactions between the mean scalar field and 
the turbulence, and between the mean velocity field and the scalar fluctuations. 
The physical significance of the last of these three processes is of limited interest, 
involving in the final period only the distortion of the scalar structure due to 
advection by a weak, variable mean velocity. 

The investigation which follows concentrates on those modifications to the 
scalar field that are consequences of the other two processes described above, 
and occur ubiquitously in the decay of scalar fields in non-homogeneous tur- 
bulence. In  the relatively simple situation studied .here, we have the advantage 
of an analytical statement of the velocity field structure (Phillips 1955). No 
turbulence measurements in an adsymmetric, heated wake have been taken 
below R, = 16 (Freymuth & Uberoi 1973); but these authors are presently 
attempting to extend their technique closer to the asymptotic, diffusion- 
dominated regime. 

2. Scalar field moment equations 
There exists a fairly extensive literature concerned with the measurement of 

scalar quantities (Freymuth & Uberoi 1971, 1973; Gibson, Chen & Lin 1968) 
and especially temperature in a turbulent wake, and the general one- and two- 
point moment equations for an advected scalar in a turbulent shear field are 
known (Corrsin 1952). 

Let r(x, t )  represent the random scalar field at position x at time t. r(x, t )  is 
introduced into the wake during an initial period of development, and it is then 
free to be advected and diffused without additional scalar matter being added 
or removed. Let U(x, t )  represent an incompressible turbulent wake produced 
asymptotically when a solid of revolution moves at high Reynolds number in 
the direction of its axis through a large body of fluid originally at  rest. Following 
Phillips, we adopt a system of co-ordinates such that the 1 axis lies along the 
wake axis. Furthermore, we assume with him that the turbulence and the scalar 
field are in a uniform state of decay along lengths of the wake over which corre- 
lations are significant. Formally, this assumption of a modified, axial, statistical 
homogeneity removes from the equations axial derivatives of single-point 
moments, and reduces the mean quantities to being undirectional and functions 
of only transverse co-ordinates. Thus, if mean quantities are denoted by bars and 
fluctuations by lower case letters, we have 

q x ,  t )  = Di(X, t )  + U i ( X ,  t )  

r(x, t )  = F(X, t )  + Y(X, t ) .  and 

With the assumptions noted above, the mean fields are reduced to 
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where x = (xl, x2, x,). The behaviour of r(x, t )  is described by 

ar a 
at ax, 
- +- (u,T) = DV21’, (3) 

where D is the scalar diffusivity assumed independent of position and time. 

using (1) and (2), 
On forming moment equations in the usual manner, we obtain from (3), 

a -  
(;-Dv2]F- = -& %Y, (4) 

-aF -aF‘ a - a -  
- - ui y’ - - u; y 7 - 7 Uk y ’ y - - Uk yy’, 

axi ax, ax, ax, 
- (5) 

a 7  a 
ar1 7)- - axk ax, (f - (DVz+ vV’2) + (8’ - D )  - ui y‘ = uLui ---T ( U L U , ~ ’ ) ,  (6) 

where the asymptotic form of the Navier-Stokes equations has been employed: 
au,/at = Y a2ui/axi axj, v is the kinematic viscosity of the fluid taken as constant 
and the prime represents a spatial location x’ rather than x. For example, the 
operator V‘2 signifies the Laplacian 

V’2 = - 

Furthermore, rl = xi - x1 and a modified statistical homogeneity in the axial 
direction has been used. Thus 

a 2  

ax; ax;. * 

The set of equations (4)-(6) is not closed, and the specification of initial data for 
r, yy’ and uiy’ is not sufficient information, in general, to solve for the time 
evolution of these quantities. In $ 3  we consider the asymptotic decay regime 
where elementary solutions can be readily obtained. 

- -  - 

3. The final period of decay of the scalar field 
Consider an infinite body of fluid which initially does not contain any amount 

of the scalar field I?. Let be introduced locally at  some region of the fluid, so 
that the total intensity of the scalar is finite. Further, we assume the fluid was 
originally at rest and subjected to a local disturbance with non-zero linear 
momentum. Under these circumstances, since neighbouring fluid elements can 
only acquire I? by molecular diffusion, the concentration field at large distances 
from the disturbed regions will decay exponentially. The Fourier transform for 
r(x, t )  is defined by 

r(x, t )  = I C(k, t )  exp {ik, x}dk, (7) 
28-2 
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where dk is the volume element dk, dk, dk, about wavenumber vector k. The 
asymptotic decay behaviour of I' in x space guarantees the continuity of C(k, t )  
and all its derivatives with respect to k. An expansion of C(k, t)  about the origin 
in wavenumber space leads to 

C(k,t) = C+kjCi+k~kjCij+O(k3), (8) 

where the coefficients C, Cj, etc. are single-valued functions of time and the 
particular realization of the flow field. 

If the scalar field I? is neither created nor destroyed after it has been introduced 
into the fluid, it follows from the inverse of (7) evaluated at  k = 0 that the total 
scalar content 

Jr(x, t )  dx 

is conserved and equals C, which is now specifically time-independent, and 
represents an invariance for the scalar field. In  the final period of decay the 
behaviour of the scalar field is governed by (3), with the convective term 
neglected: 

The Fourier transform C(k, t )  clearly obeys the corresponding equation 

a 
at - C(k, t )  = Dk2C(k, t ) ,  

which exhibits the solution 

C(k, t )  = C(k, to) exp - (Dk2(t - to)>, (9) 

where to is a virtual time origin. For'"asymptotical1y large values of ( t  - to), the 
dominant term in (9) is given by the first term in the expansion (8): 

C(k, t )  a C exp - {Dlc2(t - to)). 

On applying this result to (7)) we find 

The linearity of (1) guarantees that any superposition of solutions such as (10) 
above is also a solution. 

For the construction of the final period scalar decay in turbulence, it is 
appropriate to consider the scalar field formed by a continuous distribution of C 
such that a t  the point:X the density is C(x). An element of x space 6x thus produces 
a concentration SI?(x, t )  given by 

The entire concentration field is specified by the distribution of C(x), 
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The general solution to (1) can be expressed in the form 

r(xf, to) exp - 
[47rD(t - to)]* 

r(x,t) = 

Thus the behaviour of any scalar field, at all instances in the fmal period, can be 
specified by an appropriate density distribution C(x) ,  which can be identified 
as, for example, 

Using a device previously applied to the velocity field, we can define a line 
distribution of scalar content C(xl), which will approximate the volume distri- 
bution in the case of the long narrow wake under investigation here. Define 

c(x) = r(xf, t0)/2n3. 

J - w  J - w  

and (1 1) becomes 

The mean field F(x, t) can be obtained from (12) by noting that 6(xl) must be 
a constant by axial homogeneity. Therefore, 

from which we deduce that 
- 
T(x,t) = 

For later convenience, we 
defined by, say, J(k, t). Then 

772 x; + xf - 
- { 4D(t - to)) ’ 

2c - 
D(t - to) 

can write down the Fourier transform of F(x,t) 

J(k, t) = 2677 exp - {D(t - to) (kZ, + ki)}. (14) 

From (12) it is also possible to derive the form of moments of the concentration 
field in the final period. 

The concentration correlation 

As an example we may consider the product r(x, t) r(x’, t) which, from (12), can 
be written as 

On taking an ensemble average and defining the correlation of the fluctuations 
of C by 

h(x; - Xl) = C ( X 3  C(X1) -c(x1)27 



438 E.  E. O’Brien 

we have 

where ti = x,[D(t-t0)]-4 (i = 2,3), 5 = x;-xl, y = xl-xl 

and Pr = v/D. Further, let 
x; - x1 - a 

[ a t  - t 0 ) P  * 
r =  

Then 

An expansion of exp-{@2} in a series whose coefficients involve increasing 
inverse powers of ( t  - t o )  reduces the asymptotic form of the correlation to 

where 5 and are the two-dimensional vectors (&, c3) and (ck, ti), 
and H = 1:: h(a) du. 

x; - XI 
= [v(t  - to)]& 

To be concise we will normally write y(x ,  t )  y(x‘, t j  as 77. The Fourier transform 
of this correlation, defined by 

x exp - i{klrl + %. x + k’. x’}drl dxdx’ 

can easily be shown to be 

q5(kl, k, k’, t )  = 23n.ZH exp - {(k2 + kl2 + 2k,) D(t - to ) } ,  (15) 

where k, k’ here, and subsequently, are the two-dimensional vectors (k2 ,  k3) and 
(ki, k;), respectively. 

It is also possible to make use of the asymptotic solution (10) and analogous 
results for the velocity field ui(x, t )  to obtain expressions for the energy tensor 
and for such moments as uiy‘, uiyy‘ and wi y’, where w is the fluctuating vorticity 
at  a point. Phillips showed that a localized disturbance with non-zero total 
momentum, acting on an infinite fluid otherwise at rest, produces the asymptotic 
velocity and vorticity fields 

-- - 
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where erf 46 = Jo"exp { - y2}dy and 1M;. is a constant, proportional to the total 

momentum of the disturbance, i.e. (Phillips 1955) 9. = (2r) - ,J  uj(x) dx. 

The energy spectrum tensor 
The motion in the asymptotic wake was shown (Phillips 1955) to consist of 
a superposition of a mean streaming velocity U(x,, x3, t )  and a fluctuating velocity 
field, for which were displayed the diagonal terms of the energy spectrum tensor 
#$j(kl, k, k, t). These expressions, which are reproduced below (with a minor 
correction in sign) along with the non-diagonal elements of the energy spectrum 
tensor, have, as scalar coefficients, integrals of the linear momentum correla- 
tions along the wake axis. Phillips also showed that, for a long narrow wake, 
the motion, which depends in principle on the volume distribution of Nj, can 
be represented adequately by the line distribution mj(xl), where the 1 axis lies 
along the axis of the wake. The appropriate relationship is of course 

J -a J -CO 

Further define (with the aid of axial homogeneity and axisymmetry) 

f ( 4  = ml(X1) %(Xl+ 4, 
and 

These functions were shown to have the property 

f ( ~ )  d~ = g(c) d a  = 0, 1:: 1:: 
and to appear in the energy spectrum tensor in the form of the constants 

+m +m 

F = - (  a"f(a)dg, G = - [ a2g(a) da. 
J -a J - -m 

The energy spectrum tensor elements then become 

#l1(K1, K, K ,  t )  = Dl[K;K2K'2F - K4,(K,K;1+ KSK;) GI, 

$22(K1, K, K', t )  = D l [ { K ~ - K ~ ( K ~ + K 4 2 ) + K ~ K 3 K ; ( K 2 K ; 1 + K K ; ) } G  

- K': K ,  K; F ] ,  

-K41K2K;F], 

#33(K1,K, K , t )  = D l [ ( K ~ - K ~ ( K 2 , + K ; 1 2 ) + K ~ K 2 K ; 1 ( K 3 K ~ + K z K ~ ) } G  

#12(K,, K, K', t )  = Dl[KiKLK2F-{KfK2 +K~K4(K,KL-KZK~)}  GI, 

$13(K1,K, K , t )  = D l [ K i K ~ K 2 F - ( K ~ K 2 + K i K ; ; ( K 2 K 4  -K3K;1)} GI, 

#23(K1, K, K', t )  = D1[{K?(KiKi +K3K2) -K:K,KL(K,KL + K3K4)} G 

- K': K; K,P] , (16) 
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where K,, K and K are the normalized Fourier transform variables corresponding 
to &, 5 and r, and 

n exp - (2Ki + K2 + K‘z] D, = 
[v(t - to)]% (K2, + K 2 )  (K2, + K’Z) . 

Similarly, the asymptotic mean flow is shown to have the form 

where El is proportional to the mean linear momentum, which is entirely in the 
1 direction. 

The velocity-concentration cross-correlation 
Mixed velocity field-scalar field correlations in the final period can be obtained 
by combining (10) and ( 16) or ( 17) and using a superposition technique analogous 
to that which led to (15). It turns out to be convenient first to derive the vorticity- 
scalar cross moment wi y‘ and to construct uiy‘ from it. Symmetry considerations 
show 

where as before t~ = x; - x1 and e(cr) satisfies 

- - 

rnj(X1) C ( x 2  = 4 j  44, 

e ( g )  d r  = 0. 
- 

Then wiy’ can be shown to be 

where 
Pr 

E = f + m u e ( g ) d c r ,  -m 
a! = - 1+Pr‘ 

The interpretation of (18) is particularly - simple in cylindrical co-ordinates 
where only the azimuthal component woy’ is non-zero: 

- 
Since the velocity field is at  rest - at infinity the vector uiy‘ is entirely solenoidal, 
and it can be computed from wi y‘ as (Batchelor 1967) 

(x - x’) xiq(x’, x”) 
Ix-x‘p d V(XX’), 

47r ‘s ?‘(x‘) - 
uy’(x,x”) = -- 

where x, x’ and x“ are here three-dimensional space vectors. In  component form 
we have - - 

dW’),  (21) 
[ ( x z  -xL) w3y’(x’, x”) - ( x 3 - x ; )  w2y’(x’, x‘)] uly’ = -- 

- 41nsv(,,, Ix - x’ 13 
- 

dV(x’), 
I (XI - xi) w3y’(x’, x”) u2y’ = +- - 1  4n lx-x‘p 

-- 
where wzy’, w3y’ are given by (18). 
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FIGTJRE 1. Velocity-scalar correlations in the final period: - - 

Quantity Asymptotic decay rate Quantity Asymptotic decay rate 

( t  - to)-l 
( t  - to)-% 
(t-to)-1 
( t  - to)-% 
( t  - t , ) - Z  
( t  - to)-% 
( t  - to)-% 
( t  - to)+ 

TABLE 1. Final period time dependence 

( t  - t,)-a 

( t  - $ 0 1 4  

( t  - to)-# 

(t-to)-Y 

( t  - to)-& 

We have found it necessary to resort to numerical integration to obtain the 
vectors ucf(&,  &, &, &At). In  figure 1 the results €or G ( 0 ,  c,, 0, &, 0, t )  are 
presented, along with u2y2(0, c,, 0,  c2, 0,  t ) .  The ordinate scale, which depends 
on t ,  has been left arbitrary in both cases. The temporal dependence of various 
moments in the final period can be obtained quite simply by the methods 
developed in this section. Table 1 lists the asymptotic results for all correlations 
which occur in a moment formulation of the final period of turbulent wakes. In  
Q 4, to obtain scalar field information in the asymptotic wake, we make use of 
these temporal decay results to develop a self-consistent perturbation procedure. 

- 
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4. The penultimate period of decay of a scalar field 
Under some circumstances, discussed below, it is possible to obtain scalar 

field decay results that are valid in a time regime prior to the final period of 
decay where, by definition, only molecular dissipative processes occur. In  par- 
ticular, the influence of the interaction of mean scalar gradient with both Reynolds 
stresses and turbulent scalar flux vectors can be incorporated. We have coined 
the term penultimate period to describe this temporal regime, which, when it 
exists, immediately precedes the final period. 

From the asymptotic decay results tabulated in 3 3 one can hope to deduce the 
structure of the scalar field at  a time prior to that of its final period. The tur- 
bulence, which decays more rapidly than the scalar field and which may not 
necessarily have been generated at the same time, is still assumed to be in its 
final period of decay. For example, one can contemplate having chemical species 
generated by photochemical effects in the wake of a high-speed aircraft. In  
these circumstances (4)-( 6) continue to be the appropriate description and, 
moreover, there is a formal simplification that can be employed to reduce the 
computational labour in solving them. If we use as independent variables the 
vector location of points moving with the local mean velocity, the defining 
eauations exhibit the form 

where x and x’ are moving with the velocity and u’, respectively. We shall 
investigate the problem in this frame, and present the resulting computations 
uncorrected for the distortion of correlation functions due to moving the reference 
locations with a known, radially variable, mean flow. Such corrections, while 
simple to apply, do not affect the basic structure of the correlations when, as 
is the case here, the mean flow is constant axially for distances over which the 
fluctuating fields are correlated. 

A natural way to investigate the scalar field just prior to  its final period is to 
approximate the quantities on the right-hand sides of (24)-(26) by the leading 
terms in their asymptotic time expansions. We already know the asymptotic 
spatial structure of the turbulent energy tensor uiu~,  the mean scalar field and 
second momentsuiy’ and y 7 .  In  principle, using the techniques developed in 0 3 
and employing Phillips’s solution for the velocity mode, one can also obtain the 
spatial structure of the triple cross moments uiu; y‘ and ui yy’. The computation 
is tedious and, moreover, introduces new invariants which are integrals along 
the axis of the initial correlations, e.g. m,(xl) m2(x;) C(2’;). 

However, one simple situation immediately suggests itself. One notes that, 
for each of (25) and (26), the triple moment terms on the right-hand side decay 

- 
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more rapidly than those involving lower-order moments. For example, the pro- 
duction uiu; (aF’/ax;) and the turbulent transport (a/ax;) uiu;y’ decay asymp- 
totically as (t - and ( t  - to)*, respectively. Thus there exists a regime prior 
to the final period in which the dominant phenomenon, apart from diffusive 
decay, is production of velocity-scalar interaction by the action of the Reynolds 
stresses on the mean scalar gradient. Moreover, this regime, which we call the 
penultimate period of decay, is more extensive in the case when the processes of 
generation of the turbulence and of production of the scalar field are statistically 
independent. Triple correlation invariants such as m,(xl) ml(x;) C(x’;) above, 
which dominate the asymptotic behaviour of all mixed moments, will then be 
zero. In  this situation every term on the right-hand sides of (24)-(26) will decay 
more rapidly than is apparent from table I, with the exception of the production 
term - uiu;(aI”/&$), which is uninfluenced by initial statistical independence. 

We may therefore make use of (26) to solve for ui y’ in this regime. Since the 
turbulent energy tensor has been developed in Fourier space, it is useful to 
rewrite (20) in that form, making use of the assumption of initial statistical 
independence: 

[i + D(k2, + k2) + v(k; + k’2) &(k,, k ,  k’, t )  = - i 5 kyJ(k”, t )  $,(k,, k ,  k‘ - k”, t )  dk”, 

(27 )  

where (k,, k, k’) are the Pourier variables analogous to (r,, x, x’), #i is the trans- 
form of u 7  and J and &. are given by (14) and (16). The solution of (27 )  is 

- 

- -  
- 

1 

+&, k ,  k’, t )  = $@,, k ,  k’, t l )  exp - {[D(k2, + k2)  + v(k2, + Id2)] ( t  - t ,)} 

x exp-([D(kt+k2) +v(k?+k’2)$(t-t’)}dt’, (28)  

where q5i(kl, k ,  k‘, t l )  is initial data. 
The first term on the right-hand side of (28) corresponds to the leading term 

in an asymptotic expansion of & To be consistent with the assumption of no 
initial statistical correlation of u and y, one must have 

and 
A@,, k, k’, tl) = 0 

x exp - {[D(k; + k 2 )  + v(k2, + P 2 ) ]  ( t  - t’)}dt‘ .  (29) 

Integration of (29) has been achieved using the method of steepest descent 
for the convolution integral over wavenumber space and by evaluating the 
time integral analyticaIly. After some effort, which includes replacing the forma1 
singularity in &. at t = to by any finite value, we find, in the limit t, -+ to, 

En3a2[( I/. - 2 )  K2, + K2/a + aKt2]8 WL K ,  K’)  Ky K‘, t ,  v[v(t - t0)]4 [(K? + K2) (K2, + (I - a ) 2  (A?)] 

x exp - {2K2, + K 2  + (1 - a )  Kr2},  (30) 
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where (Kl, K, K )  are the Fourier variables corresponding to (El, 5, g'), 

12(K1, K, K )  = {G[K!Ki - K4,K3(KiK3- Kj K,)]  - F(  i -a) K4,K'2K2}, (31) 

and 

13(K1, K, K )  = { G [ K ! K j - K ~ K 2 ( K ~ K 2 - K 5 , K 3 ) ] - P ( i  -a)K?K'2K3}. (32) 

One conclusion which can be drawn immediately from (30) is that the asymptotic 
decay rate for ui y' is ( t  - as was obtained in the general 
case when the u field and the concentration field were statistically correlated 
at their generation. 

From (30) for u 7 i n  the penultimate period of decay, it is possible to solve for 
the mean concentration. In  Fourier space (24) becomes 

- 
rather than (t - 

-+Dk'J = - ik i  $i(kl,k",k-k,t)dk, a J  s at (33) 

for which the solution is 

J ( k , t )  = J(k,tl)exp{-Dk2(t-tl)} 

- iIi: [ I k u k ,  $Jk1, k ,  k - k", t ' )  d k  dk, exp { - Dk2(t - t ' ) }  dt'. (34) 

The first term represents the final period of decay result, (14). Hence the modifica- 
tion to the mean field, which we represent by 6J(k, t ) ,  is 

1 

6J(k , t )  = -isf, ~ ~ ~ " k , $ , ( k , , k " , k - k " , t ' ) d k ' d E ,  I exp{-Dk2(t-t'))dt', (35) 

where $i is given by (30)- 
The convolution integral in (35) has been evaluated approximately using the 

method of steepest descent, and the time integration has been carried out 
analytically. This evaluation of 6J(k ,  t )  is outlined in the appendix, as a typical 
example of the analysis we have used in this section. We find, for Pr 6 1 and K 
large (see (A 3) and (A 5)), 

I KI9 F exp { - [( 1 - a)/(2 -a)]  K2) 6J(k, t )  N - 
[v(t - t ~ 1 5  

The very rapid decay rate ( t -  indicates that the mean field is highly in- 
sensitive to velocity-scalar interactions in the asymptotic time regime, since the 
scalar mean itself decays asymptotically as (t  - to)-1. Analogous computations 
can be done for the scalar intensity spectrum $(k l ,  k, k', t )  in the penultimate 
period of decay of a wake, in which the scalar and velocity fluctuations are 
generated by statistically independent processes. The appropriate equation is, 
from (5) ,  

{@/at) +D(k2+7c'2))$(kl, k, k', t )  

= - i l k ;  J(k", t )  [$j(kl, k, k' - k", t ' )  + $j(kl, k, k-  k", t ' ) ]  dk". (37) 
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Defining 6$ to be the difference between the scalar field obtained by solving (37)  
and the final period decay result (15), we can show that 

a K’z]’4.(Kl,K,GK’) 1 exp [ - (2K;+Kz+- ’ -a K’Z)) 
a(1 +a) 

[(:-2) K;+&K2+- 
(1 +a)2 

a(1 +a) 
[ K ; + K ’ z ] b + ( e ) 2 K ’ 2 ]  [ 2( 1 - 2a)  K2+- 

2-CI a 

2K;+Kt2+- 
a(1 +a) 

[ (:-2) a 

a(1t-a) 
Kr2+- 

2( 1 - 2a)  + Kf 
[K;+K2] [K:+ ( 2 ) 2 K 2 ]  [ a 

(38) 
where there is a restriction that 0.3 c a or 0.43 < Pr 6 1. 

The temporal behaviour of the perturbation to scalar intensity in the penulti- 
mate period is as (t- to)-g,  which is significantly more rapid a decay than the 
final period scalar intensity result (t - to)-% displayed in table 1. If the assumption 
of initial statistical independence had not been made, the structures for 84 and 
6J in the penultimate period would be different from those given by (36)  and 
(38),  since the proper #i to have used would have been the Fourier transforms of 
(21)-(23), rather than (29). The numerical computation is formidable, and we 
have not attempted it. However, it is easy to see that the temporal behaviour of 
the perturbations would become 

6J N (t-t0)-4, S$ N ( t - t o ) a .  

5. Numerical results 
Numerical computations have been made from the various results reported 

in $0 3 and 4. In  all cases we have expressed the data in normalized real space 
rather than in Fourier space. The ordinate scale is arbitrary since absolute 
magnitudes are strongly dependent on time, as is evident from table 1.  Further- 
more, there are undetermined constants such as F ,  G and E,  whose values depend 
on the details of the generating processes. For the purposes of computation 
these invariants are taken to have equal value. All functions are properly axi- 
symmetric and, unless otherwise stated, the Prandtl number is unity. 

Figure 1 is a plot of the final period behaviour of u 7  and u 7 ,  and it was 
discussed at the end of $3. Only correlations at coincident points have been 
measured in an axisyrnmetric heated wake (Freymuth & Uberoi 1973), and these 
have been at Reynolds numbers much larger than those that should charac- 
terize the final period of decay. Nevertheless, the results of figure 1 show a 
qualitative similarity to the reported measurements. Perhaps this result is ex- 
plained by noting that ur is linked to the mean concentration field through (4), 
and the mean itself exhibits extraordinarily strong insensitivity to perturbations 
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FIGURE 2 .  Energy tensor component a2( 1, Ea, 0,  t2, 0) in the find period. 
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FIGURE 3. Velocity-scalar correlation u,y(O, E2, 0, Ea, 0) in the 
penultimate period: 0 ,  Pr = 1; A, Pr = 0.01. 

in the asymptotic regimes both experimentally and theoretically from $4.  In  
figure 2 we reproduce a computation of one component of the energy tensor 
uIu;( 1,  t2, 0,  kz, 0) obtained by a Fourier transform of gI2 in (16), which is of 
course a final period result. 

Figures 3 and 4 display features of the velocity-scalar correlation which result, 
in the penultimate period of decay, from interactions between mean scalar 

- 
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FIGURE 4. Velocity-scalar correlation G(&, 1,0,1,0) in the penultimate period. 

gradients and non-coincident Reynolds stress tensors. In  figure 3 e ( 0 ,  cz, 0, c2, 0) 
is plotted with Prandtl number as parameter and it exhibits the expected 
behaviour. We note by axisymmetry that u . 7  is an antisymmetric function of c2 
and, by axial homogeneity, a(&, c2, 0, &, 0 )  is a symmetric function of el. It 
is to be noted that c y  in the penultimate period is also generally similar to 
that measured in the more energetic regions of the wake. The initial assumption 
that the turbulence and scalar fields are in a uniform state of decay is supported by 
figure 4, in which the longitudinal correlation u2y’(cl, 1,0,1,0) is plotted. We 
had difficulty computing for values of el > 5, but it seems that the longitudinal 
correlation distance is of the same order as the width of the wake in figure 2. 

In  figures 5 and 6 we show aspects of the structure of the perturbation to 
the concentration correIation in the penultimate period, produced by interactions 
between mean scalar gradients and velocity-scalar correlations In figure 5 the 
dependence of Sy7 on lateral separation is depicted by plotting 

- 

& 7 ( 0 ,  em 0, c2 + 0) 

against Ez with Atz  as parameter. The curve At2 = 0 represents the perturbation 
to scalar intensity, which is symmetric in & and which has the same general 
form as is needed to reproduce measured profiles of 7 (Freymuth & Uberoi 
1973, figure 3). This is not surprising. It seems likely from the already established 
results that and F are qualitatively similar to their measured values at 
moderate Reynolds number. Figure 6 represents the longitudinal correlation 
SyT(cl, 1, 0, 1 ,o)  for various positive El. By definition 8 9  is a symmetric function 
of el. We have not plotted ST(6, t ) ,  which is obtained as (A 6), since the extra- 
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I 

FIGURE 5 .  Scalar correlation perturbation 6yy’(O, &, 0,  Ez + At2, 0) in the penultimate period: 
Af;  - 0 ;  - - - -, A& = 1; ----- , A& = 2. 

-7 2 -  

FIGRUE 6. Scalar correlation perturbation 8yT(ll, 1,0,1,0) in the penultimate period. 
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ordinarily rapid time decay of this function as compared to F(g,t) makes it 
unlikely that it would be observed experimentally. 

The wake structure, and hence the scalar field structure, in the penultimate 
period will be altered if the net momentum of the body is zero. The velocity field 
in this case has been obtained (Phillips 1955), and the same methods as used in this 
paper could be employed to deduce the corresponding asymptotic scalar structure. 

The author would like to thank Mr Chung-Hua Lin for his assistance in carrying 
out the computations, Professor Rene Chevray for several helpful suggestions 
and the National Science Foundation for its partial support of this research 
through grant GK-2 1 2 14. 

Appendix. Evaluation of mean scalar field modification 6J 

j ' ,"lvkj#j(kr ,  k", k -  k")dk"dk,, (A 1)  
aJ -+Dk'J = -i 
at 

where q5j is given by (30). The convolution integral over the two-dimensional 
vector k is carried out using the approximate method of steepest descent 
(Heading 1962). A typical integral is of the form 

1 = j'mS+mg(k~,k,k';,kl)exp{f(k,,k,k;,kl)~dk",dkl, - w  - w  

which can be approximated by 

2n 
h 

1 = -- g(k,, k, k"") expf(kl, k, k*"), 

where k*" is that vector value of k" which maximizes f; 

Consequently, we find that the right-hand side of (A l), say X, can be written 
approximately as 

where 

G K : K ~ -  F ( - )2  l -a  K f K 4 )  exp - 2 ~ q  
2-a 

l ( K )  = 

and a < 0.5. Define 
7' = (t '-to)v and T = (t- to)v 

l -a  A( k2+) 2( 1 - a)2 
then 6J(k,  t )  - exp ( - (7) k27) so 7 exp (- k27') d7', 

P L M  29 
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(A 4) 
Using the asymptotic result (Abramowitz & Stegun 1965), 

where C is any positive constant, and replacing the singularity at K’ = 0 by any 
integrable behaviour there, we obtain for large K 

k10 exp { - [( 1 - a)/(2 - a)] k2v(t - to)} 
6 J ( k , t )  N - 

[k2v(t - to)]+ 9 

or 
1K19Pexp(-[(1 -a)/(2-a)] K2} 

6J(k,t)  N - 
[v(t - 4 ~ 1 5  

The inverse Fourier transform of (A 5) is readily obtained (Grobner & Hofreiter 
1961) : 

where M(a ,  b, z )  is a confluent hypergeometric function known as Kummer’s 
function (Abramowitz & Stegun 1965), and A(a) is a function of the Prandtl 
number only. For small values of t2, a limit consistent with the process by which 
(A 5) approximated (A 4), we find 
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